Speedups and orbit equivalence of finite extensions of ergodic Zd-actions
نویسندگان
چکیده
We classify n-point extensions of ergodic Z-actions up to relative orbit equivalence and establish criteria under which one n-point extension of an ergodic Z-action can be sped up to be relatively isomorphic to an n-point extension of another ergodic Z-action. Both results are characterized in terms of an algebraic object associated to each n-point extension which is a conjugacy class of subgroups of the symmetric group on n elements.
منابع مشابه
Speedups and orbit equivalence of finite extensions of ergodic Z-actions
We classify n-point extensions of ergodic Z-actions up to relative orbit equivalence and establish criteria under which one n-point extension of an ergodic Z-action can be sped up to be relatively isomorphic to an n-point extension of another ergodic Z-action. Both results are characterized in terms of an algebraic object associated to each n-point extension which is a conjugacy class of subgro...
متن کاملSpeedups of Ergodic Group Extensions of Z-actions
We define what it means to “speed up” a Zd−measure-preserving dynamical system, and prove that given any ergodic extension Tσ of a Zd− measure-preserving action by a locally compact, second countable group G, and given any second G−extension Sσ of an aperiodic Zd− measure-preserving action, there is a relative speedup of Tσ which is relatively isomorphic to Sσ . Furthermore, we show that given ...
متن کاملEven Kakutani Equivalence and the Loose Block Independence Property for Positive Entropy Z Actions
In this paper we define the loose block independence property for positive entropy Zd actions and extend some of the classical results to higher dimensions. In particular, we prove that two loose block independent actions are even Kakutani equivalent if and only if they have the same entropy. We also prove that for d > 1 the ergodic, isometric extensions of the positive entropy loose block inde...
متن کاملEven Kakutani Equivalence via Α and Β Equivalence In
In this paper we discuss the relationship between two of the fundamental examples of restricted orbit equivalence: even Kakutani equivalence and α equivalence. Both equivalence relations arise in the context of representations of ergodic and measure preserving Rd actions. The first is related to the Ambrose-Kakutani Theorem [1]: every free, measure preserving and ergodic R action can be represe...
متن کاملIsometric Extensions of Zero Entropy Z Loosely Bernoulli Transformations
In this paper we discuss loosely Bernoulli for Zd actions. In particular, we prove that extensions of zero entropy, ergodic, loosely Bernoulli Zd actions are also loosely Bernoulli.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017